Existence of positive solution of a singular partial differential equation
نویسندگان
چکیده
منابع مشابه
Existence of Positive Solution of a Singular Partial Differential Equation
Motivated by Vityuk and Golushkov (2004), using the Schauder Fixed Point Theorem and the Contraction Principle, we consider existence and uniqueness of positive solution of a singular partial fractional differential equation in a Banach space concerning with fractional derivative.
متن کاملExistence of a positive solution for a p-Laplacian equation with singular nonlinearities
In this paper, we study a class of boundary value problem involving the p-Laplacian oprator and singular nonlinearities. We analyze the existence a critical parameter $lambda^{ast}$ such that the problem has least one solution for $lambdain(0,lambda^{ast})$ and no solution for $lambda>lambda^{ast}.$ We find lower bounds of critical parameter $lambda^{ast}$. We use the method ...
متن کاملexistence of a positive solution for a p-laplacian equation with singular nonlinearities
in this paper, we study a class of boundary value problem involving the p-laplacian oprator and singular nonlinearities. we analyze the existence a critical parameter $lambda^{ast}$ such that the problem has least one solution for $lambdain(0,lambda^{ast})$ and no solution for $lambda>lambda^{ast}.$ we find lower bounds of critical parameter $lambda^{ast}$. we use the method ...
متن کاملExistence of positive solutions for a boundary value problem of a nonlinear fractional differential equation
This paper presents conditions for the existence and multiplicity of positive solutions for a boundary value problem of a nonlinear fractional differential equation. We show that it has at least one or two positive solutions. The main tool is Krasnosel'skii fixed point theorem on cone and fixed point index theory.
متن کاملThe Existence of Positive Solution to Three-Point Singular Boundary Value Problem of Fractional Differential Equation
and Applied Analysis 3 Definition 2.2. The fractional derivative of order q > 0 of a continuous function x : 0, ∞ → R is given by Dx t 1 Γ ( n − q) ( d dt )n∫ t 0 x s t − s q−n 1 ds, 2.2 where n q 1, provided that the right side is pointwise defined on 0,∞ . Lemma 2.3 see 7 . 1 If x ∈ L 0, 1 , ρ > σ > 0, then DIx t Iρ−σx t . 2 If ρ > 0, λ > 0, then Dρtλ−1 Γ λ /Γ λ − ρ tλ−ρ−1. Lemma 2.4 see 12 ....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematica Bohemica
سال: 2008
ISSN: 0862-7959,2464-7136
DOI: 10.21136/mb.2008.133943